その他

OTHERS その他

その他

平成19年度 【特別刊行物】 『生かす算数・生かす数学シリーズ』

「生かす算数・数学シリーズ」は、当財団理事長の杉山吉茂先生(東京学芸大学名誉教授)を中心に研究開発を進めてきた「わが国の算数・数学の望ましいカリキュラム構想」を具体化すると共に、これからの教科書の作り方、数学の授業のあり方への新しい試みも示した教科書モデルです。
(全7冊)小学校4年・5年・6年 中学校1年・2年・3年 高校数学Ⅰ

目次

はじめに/杉山 吉茂  編集代表

私達は、平成10年の学習指導要領の改訂で算数・数学の内容が3割削減されたのを憂い、「我が国の望ましい算数・数学のカリキュラム」の開発を思い立ち、日本教材文化研究財団のご好意とご協力を得て、平成12年からカリキュラムの研究・開発に当たり、平成14年にその案を発表した。その後、平成15年からは、そのカリキュラムを具体化する教科書の執筆活動にもご協力をいただいてきた。

さらに、今回、東京書籍のご好意も得て、ここに教科書の形で発表することができるようになった。日本教材文化研究財団と東京書籍に心から感謝するとともに、本教科書の作成にご協力いただいた多くの方々にも心から感謝の意を表する次第である。

本教科書シリーズ「生かす算数・数学」の特色

本教科書の作成にあたっては、次のことに心掛けた。

1. 数学を利用する能力と態度の育成

これからは、これまで以上に数学を利用する機会が増え、数学を用いて事象を数理的にとらえ、そこにある問題を適切に処理できる能力と態度を身につけることが欠かせない社会になる。そうした社会では、すべての子どもが数学を活用して現実世界の様々な事象を表現し、その仕組みを解明し、数学を用いて予想したり問題解決を行ったりすることができるような算数・数学教育をすることが求められる。このようなことはこれまでも言われてきたことではあるが、これまでの算数・数学の指導は、まず数学の理解をはかり、技能を習熟させ、そのあと数学を用いて問題を解決させるという形、つまり、数学の理解→応用という形で行なわれてきたが、そのような応用は数学の理解や習熟の程度を試すためと考えられ、数学が役に立つという意識を育てられないできた。
本教科書では、身の回りの問題を数学を用いて解決することを中心にするとともに、数学の有用性が分かるようにするため、まず、解決したい問題を提示し、その解決に必要な数学を学んで問題を解決することを通して、数学を用いることによって問題が解決できたという気持ちが生まれるようにした。
そうしない単元では、数学を学ぶ必然性が分かるような展開を工夫した。

2. 教える数学のレベルの向上

身の回りにある問題を数学を用いて解決できるためには、事象を数学的に表現し処理するために必要な三角関数や指数関数などのいろいろな関数、微分・積分の基礎までを身につけていることが必要であると考え、高校1年までにそれらをすべての生徒が学習できるようにした。

3. テクノロジーの活用

グラフ電卓やパソコンなどのテクノロジーを適切に活用し、計算などの技能の習熟に必要な時間を少なくすると同時に、これまで処理できなかった計算をしたり、手で書けなかったグラフを描かせたりすることなどによって、解決できる問題の幅を拡げるようにした。

4. 単元構成

学習の効率等を考え、単元の構成をこれまでと変えたところがある。たとえば、小学校では、これまで小数と分数の学習は別々の単元で学習してきたが、本教科書シリーズでは、小数と分数を関連づけて学ばせるため、小数と分数を同じ単元で学習させるようにした。
中学校では、これまで方程式と関数は単元が分けられ、方程式→関数の順序であったが、関数の単元の中に方程式を含めて学習できるようにした。

小学校編の特色

本教科書シリーズでは、数学教育のねらいを「数学を用いて事象を数理的に把握し、数学を用いて問題解決ができる人間を育てる」ことにおいている。小学校では、その基礎となる数・量・図形の概念を豊かに育てるとともに、算数を発展的・創造的に学習させることを通して、算数のよさや楽しさを味わえるようにすることを大事にした。

  1. 教具として、電卓とそろばんを適宜用いることにした。そろばんの仕組みは十進位取り記数法と同じなので、数を理解する意味でも数感覚を育てる意味でも1年生から用いる。電卓は、4年生以降、計算がある程度確実になった段階で適宜導入する。電卓に関連して、数の見積りや数の感覚を育てることも大切にした。
  2. 計算で扱う数の桁数を、数の拡張にともなって増やすことにしたが、それは、桁数の多い計算をすることにねらいをおくわけでなく、数および記数法の理解に役立てることをねらいとしている。
  3. 小数と分数を関連づけて扱うことにした。本来、小数と分数は有理数を表す方法であり、同じ数の違った表現にすぎないのであるが、これまで違ったものと見させすぎたきらいがある。関連づけて学習させることにより、分数を数として理解しやすくなるだけでなく、計算の方法などを考える際にも役立てることができ、創造的な学習ができるようになると考える。
  4. 第6学年では、計算の可能性に関連して負の数を導入した。
  5. 数量関係領域の内容は、独立した単元を設けて学習させるのでなく、他の領域と関連づけて扱うことを基本にした。たとえば、□を用いた式、文字を用いた式などは、数と計算の領域や量と測定の領域の学習の中に組み入れた。

小学4年・小学5年・小学6年 目次

小学4年 目次

1 大きな数 … 1
2 角 … 11
3 四角形 … 19
4 およその数 … 31
5 わり算 … 41
6 面積 … 57
7 小数 … 69
8 直方体と立方体 … 83
9 分数─1 … 95
10 分数─2 … 105
11 小数と分数のかけ算とわり算  … 121
12 かわり方調べ … 143
13 体積 … 159
14 大きさのくらべ方 … 173

小学5年 目次

1 十進数のしくみ … 1
2 がい数の計算 … 13
3 図形の合同 … 15
4 平均とのべ … 27
5 わり算と分数 … 37
6 小数と分数のかけ算 … 45
7 小数と分数のわり算 … 69
8 四角形と三角形の面積 … 103
9 およその面積 … 123
10 単位量あたりの大きさ … 125
11 倍数と約数ものの集まり  … 137
12 分数のたし算とひき算 … 153
13 たし算の式で表される関係 … 159
14 くらべ方を考えよう … 165
15 百分率とグラフ … 169
16 円と正多角形 … 185

小学6年 目次

1 整数、小数、分数の計算  … 1
2 対称な形 … 9
3 立体─1 … 19
4 立体─2 … 29
5 比と比の値 … 37
6 拡大図と縮図 … 51
7 比例 … 63
8 反比例 … 75
9 立体の表面積と体積 … 93
10 表とグラフ … 101
11 式とグラフ  … 109
12 確からしさ … 119
13 数のしくみ … 131
14 あたらしい数 … 137
15 メートル法 … 141

小学5年 単元6小数と分数のかけ算(PDF)

中学校編の特色

日常事象や自然現象を数理的に把握し数学を積極的に用いて問題を解決する活動や、数学を創造的・発展的に学習できるようにすることを通して、数学のよさ、数学の学習の楽しさが感じられるようにした。

  1. 日常の具体的な事象を数理的に把握することに重点をおいたが、単元によっては、具体的な事象からでなく、数学的な必然性をもった課題を解決することを通して数学を発展的・創造的に学習できるようにし、数学が発展的に作られることが分かるような展開を工夫した。
  2. 具体的な事象を数理的に考察する活動を重視するため生のデータを用いることにしたので、グラフ電卓などのテクノロジーを活用することにした。これらを活用することにより、表、グラフを容易に描くこともでき、それらを活用して数量関係に関わる多くの問題に答えることに役立てることもできる。
  3. これまで、方程式と関数は単元が分けられ、方程式→関数の順序で学習が進められてきたが、関数の単元の中に方程式・不等式を含め、日常事象や自然現象の中に関数を認め、その関数を利用して問題を解決する際方程式が必要となるという場面を作って方程式の学習をするようにした。
  4. 高校で三角関数を学習することにしたので、三角比の学習を中学3年に位置づけた。

中学1年・中学2年・中学3年 目次

中学1年 目次

第1単元 整数の性質 … 1
(1) 整数の性質 2
第2単元 集合と分類 … 11
(1) 集合と分類 12
第3単元 正負の数 … 15
(1) 正負の数 16
(2) 加法と減法 24
(3) 乗法と除法 34
第4単元 比例と反比例 … 51
(1) 比例と反比例 52
(2) いろいろな方程式 69
第5単元 平面図形 … 71
(1) 基本の作図 72
(2) 図形の移動 91
第6単元 空間図形 … 103
(1) 多面図 104
(2) 立方体のいろいろな見方 115
第7単元 スタンプ作りの数学 … 129
(1) スタンプ作りの数学 130

中学2年 目次

第1単元 剰余系 … 1
(1) カレンダーのしくみ 2
第2単元 1次関数 … 13
(1) 1次関数 14
(2) 不等式と連立方程式 24
第3単元 合同な図形 … 45
(1) 多角形の内角と外角の和 46
(2) 合同な図形 59
第4単元 三角形と四角形 … 73
(1) 三角形 74
(2) 平行四辺形 91
第5単元 相似な図形 … 115
(1) 相似な図形 116
(2) 平行線と比 124

中学3年 目次

第1単元 無理数 … 1
(1) 平方根 2
第2単元 多項式 … 15
(1) 多項式の計算 16
(2) 因数分解 27
第3単元 事象と関数 … 45
(1) 事象と関数 46
(2) いろいろな関数 64
第4単元 三平方の定理 … 73
(1) 三平方の定理 74
(2) 三平方の定理の応用 83
第5単元 円 … 97
(1) 円の性質 98
(2) 円周角 103
(3) 円と直線 117
(4) 2つの円 128
第6単元 三角比 … 135
(1) 三角比 136
(2) 図形の計量 148
第7単元 資料の分析 … 155
(1) 資料の分析 156

中学2年 第2単元 1次関数(PDF)

高等学校編の特色

高等学校では、日常事象を数理的に把握し、数学を用いて問題を解決する力を育てるという姿勢を一層強めた。

  1. 数学を用いて問題を解決するという数学学習の基本のねらいを一層強めるために、具体的な問題の解決のために数学を学んだり創造したりするという学習を中学校以上に強くした。
  2. 生徒の身の周りに見られる問題を解決することができるためには、整関数だけでなく、三角関数、指数関数などのいろいろな関数を理解して用いること、および、微分・積分が不可欠であると考え、高狡1年までにそれらを学習できるようにした。
  3. いろいろな関数をうまく使って問題を解決できるようにするためには、事象をいろいろな関数でとらえるだけでなく、それらの関数をグラフに表したり処理したりすることが欠かせない。それらの処理を効率的にするため、グラフ電卓やパソコンなどのテクノロジーを積極的に用いることにした。テクノロジーを用いることにすれば、現在高校2年以上で教えられている関数の微分・積分を利用することもできる。
  4. 文字式やベクトルの単元など、これまでと違った特色をもった扱いをすることが難しい単元は今回省略した。

高校 数学I・数学SA 目次

高校 数学I 目次

第1単元 方程式と不等式 … 1
1節 数と式
2節 式と証明
3 不等式の証明と活用 2
3節 高次方程式
第2単元 いろいろな関数 … 7
1節 三角関数とその利用 8
2節 指数関数とその利用 16
3節 対数関数とその利用 31
4節 関数の値の変化 44
第3単元 ベクトル
第4単元 平面図形と式
第5単元 データの処理 … 61
1節 データ解析の基礎 62
2節 確率 78

高校 数学SA 目次

第1単元 平面図形
第2単元 いろいろな曲線 … 101
1節 式と図形
2節 媒介変数表示と極座標
1 曲線の媒介変数表示 102
第3単元 数列 … 109
1節 数列
3 等比数列 110
5 帰納的定義 115
第4単元 離散数学

一覧へ戻る